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Abstract

Acoustic-to-articulatory inverse mapping is a dif-
ficult problem because of its non-linear and one-
to-many characteristics. We have previously de-
veloped a speech inversion method using a hid-
den Markov model (HMM)-based speech produc-
tion model which takes into account the phoneme-
specific dynamic constraints of articulatory param-
eters. We found that the constraint significantly de-
creases the estimation error of articulatory param-
eters. However, the model was trained for each
speaker and articulatory parameters were estimated
in a speaker-dependent manner. In this study, we
present a speaker-normalized HMM-based speech
production model which is constructed from a multi-
speaker articulatory-acoustic database, and esti-
mate articulatory parameters from multi-speakers’
speech signals using the model. Result shows that
the estimation error of articulatory parameters for
vowels is about 1.0 mm.

1 Introduction

The acoustic-to-articulatory inverse mapping is
characterized by one-to-many mapping [2]. One of
the first studies to uniquely determine articulatory
parameters from a speech signal by using continu-
ity constraints on articulatory trajectories was done
by Schroeter and Sondhi [6]. Moreover, to take into
account the more reliable dynamic constraint based
on articulatory measurements, a segmental acous-
tic and articulatory pair codebook [16], hypercube
codebook [14], an extended Kalman filter [9], self-
organizing hidden Markov model (SOHMMs) [15]

and our own hidden Markov model (HMM)-based
speech production model [10] have been proposed
for speech inversion. However, the model was
trained for each speaker and articulatory parame-
ters were estimated in a speaker-dependent man-
ner. The estimation method of articulatory move-
ments from an arbitrary speaker’s speech signal has
practical applications in speech training and for-
eign language learning. Dusan and Deng performed
speech inversion for unknown speakers by compen-
sating for their vocal-tract length [8]. They sug-
gested that the main source of inter-speaker vari-
ability in speech is geometrical differences in vocal-
tract length. However, vocal-tract shape measure-
ments showed that the need of non-uniform scaling
along the vocal-tract length to normalize the vari-
ability in speech [3]. Therefore, the variability in
speech cannot be sufficiently normalized only by ad-
justing vocal-tract length. To overcome the problem,
we have proposed a speaker-adaptation method that
statistically adapts the speech spectrum of a refer-
ence model to that of the unknown speaker by tak-
ing into account the dynamic constraints of articula-
tory parameters [11]. In this method, we assumed
that the unknown speaker’s dynamical constraints
on articulatory parameters are the same as the ref-
erence speaker’s. However, the estimation accuracy
for the speaker-adapted model was half that of the
speaker-dependent model. This was because there
are differences in the dynamic constraints of artic-
ulatory parameters among the unknown and refer-
ence speakers. Figure 1 shows articulatory trajec-
tories of the vowel interval [&] of the word /pap/
for nine male speakers; the trajectories vary among
the speakers (for details see also Sec. 2). The dif-
ference among the speakers was relatively large for
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Figure 1: Articulatory trajectories of the vowel [ce]
and palate shapes for nine male speakers.

TD. Therefore, to improve estimation accuracy, a
speaker-independent phoneme-specific articulatory
dynamical model is required.

2 Data collection

Articulatory parameters and speech signal data
were obtained from simultaneous recordings using
the MIT EMMA system [5] and from audio sig-
nals of continuous speech utterances (Fig. 2). In
articulatory-acoustic recordings, nine male and eight
female English native speakers read about 330 En-
glish sentences with clear and normal speaking:
‘Say CVC (e.g. pip) for us’ and ‘Say CVC CVC
(e.g. keep PECK) for us,” where C =[p, t, k] and V =
[, a, e, 1, 1, u]. The articulatory data and the palate
positions were collected at a sampling rate of 500
Hz and down-sampled to 250 Hz. The articulatory
parameters were represented by the vertical and hor-
izontal positions of six coils, which were placed on
the lower incisor (LI), the upper and lower lips (LL,
UL) and the tongue (TT, TB, TD: three positions).
The speech signal was recorded at a sampling rate of
16 kHz. The first three formants (F1-F3), their band-
widths (B1-B3) and fundamental frequency (FO0) for
the vowel intervals of CVCs were the acoustic pa-
rameters, each with 250 Hz sampling rate. Vowel
intervals were manually marked by experts.
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Figure 2:  Simultaneous recordings to obtain
articulatory-acoustic data.

phoneme
* P P, P3 e

/py/ .
articulatory HMM —0—)6—)6')6—)0— oo

| | X : articulatory parameter vector

vy

;x+b1 y:A2x+b2 o o0

mapping l l

Y y2ys
acoustic parameter vector

articulatory-to-acoustic y=A

Figure 3: HMM-based speech production model.

3 HMM-based speech production model

The HMM-based speech production model con-
sists of HMMs that represent the articulatory pa-
rameters for each phoneme, called the articulatory
HMM, and an articulatory-to-acoustic mapping that
transforms the articulatory parameters into acous-
tic parameters for each HMM state (Fig. 3). In
the model, the linear function y, = A,x; + b;
was assigned to each HMM state j to approx-
imate the articulatory-to-acoustic mapping y, =
f(x4) in a piecewise linear form. We denote the
articulatory parameter vector sequence as x =

[€],---,x,---,2]]" and the acoustic parameter
vector sequence as y = [le, . ~,y:,-~~,yz]T,

where we assume that articulatory parameter vec-
tor ; and acoustic parameter vector y, consist of

ISSP 2008



8th International Seminar on Speech Production

static parameters and their velocity and acceleration.
The superscript (-) " is the matrix transpose, and L
the length of the observation sequence. The output
probability of an acoustic parameter vector sequence
in the HMM-based speech production model is

PN = [ Plyle. a. ) P(zlq. ) P(a))de.
q

Here, ¢ = (q1,---,qr) is the HMM state se-
quence, and )\ represents the phoneme-specific mod-
els. P(y|x, g, \) is the occurrence probability of an
acoustic parameter vector sequence for a given artic-
ulatory parameter vector sequence, and P(x|g, \) is
the output probability in the articulatory HMM.

Using the model, we presented a method of max-
imum a-posteriori (MAP) estimation of articulatory
parameters using dynamic features for given acous-
tic parameters: The estimated articulatory parame-
ters are

#,=(R'o,'R+R"ATa 'AR)™*
x(Rlo,'z+ R Ao, (y - b)),

where R is the transformation from the static
articulatory parameter vector sequence T, =

T T T .
(@, -+, %, --,%,, ] tothe articulatory param-
eter vector sequence = [x{, -, x}, -, x}]T.

x and o, are the mean and covariance of the ar-
ticulatory parameter vector, and o, is the covari-
ance of the error in the linear approximation of
the articulatory-to-acoustic mapping. Our previous
study showed that the RMS error between the mea-
sured and estimated articulatory parameters for sen-
tence utterances was 1.5 mm for three-state HMMs
and showed statistically significant difference from
that for one-state HMMs (p < 0.01). This indicates
that the dynamical constraints on the basis of artic-
ulatory movements efficiently reduce redundancy in
acoustic-to-articulatory inverse mapping.

4 Proposed model

Figure 4 shows the method for constructing
the speaker-independent phoneme-specific HMM-
based speech production model. First, by using the
multi-speaker articulatory and acoustic data, we nor-
malize articulatory and acoustic parameters using
speaker-adaptive training (SAT) [12], respectively.
Then, by using these normalized articulatory and

Multi-speaker articulatory-acoustic data

i SAT l SAT

Articulatory normalization Acoustic normalization

! !

Speaker-normalized HMM-based speech production model

Figure 4: Algorithm for speaker-normalized models.

acoustic data, we create a gender-specific speaker-
normalized HMM-based speech production model.
The SAT paradigm makes it possible to statis-
tically obtain the speaker-independent articulatory
HMMs and the speaker-adaptive matrix for individ-
ual speakers from the multi-speaker data. Our artic-
ulatory trajectory formation study has demonstrated
that the estimation error of articulatory parameters
based on this model is 1.29 mm for sentence ut-
terances, not significantly different from that of the
speaker-dependent model (p = 0.02) [12]. In par-
ticular, the RMS error for the tongue back with SAT
was smaller than that without SAT. Figures 5 and
6 shows speaker-independent articulatory trajecto-
ries for six vowels for male and female speakers,
respectively. These show that there are differences
in articulatory dynamics between genders. We also
conducted a SAT procedure for acoustic parameters
(Fig. 7). It appeared that the differences in formant
dynamics between genders are smaller than articu-
latory differences. This indicates that the speaking
tactics in vowels differ between genders due to the
effect of palate shape and vocal-tract length. This
is related to the study of Simpson [1]: speakers’
vowel articulations adapt to the form to their respec-
tive palates between genders during the acquisition
of speech, but a more detailed analysis is required.

5 Experimental conditions

The types of HMMs were left to right ones with
no skips. In the experiments, three-state monophone
HMMs were used. Each state was composed of sin-
gle Gaussian distribution. One speaker-adaptive ma-
trix for each speaker for both articulatory and acous-
tic parameter vectors were used. As training data,
5035 and 4365 vowels for male and female subjects
were used, respectively. We estimated six articu-
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Figure 5: Speaker-normalized articulatory parame-
ters for each vowel for males.

latory positions from the first three formants, their
bandwidths and FO using the proposed model. we
applied a MAP estimate of articulatory parameters
with dynamic features using a segment length 164
msec [10]. We evaluated the proposed method in
terms of the RMS error between the measured and
estimated articulatory parameters from acoustic pa-
rameters. The RMS error was evaluated in the vowel
intervals and averaged for every speaker. All test
vowels were included in the training ones.

6 Results

Figure 8 shows the measured and estimated artic-
ulatory movements for vowel [&]. Figure 9 shows
the RMS error of the articulatory parameters. The
average error for all articulators was 1.03 mm. The
maximum average error was 5.32 mm for males and
3.31 mm for females, respectively. Figure 10 shows
the RMS error of the articulatory parameters for
each vowel. The error for high vowels is smaller
than that of low vowels. Figure 11 shows the RMS
error of the articulatory parameters for each speaker.
The error was less than 1.5 mm for every speaker.
These results indicate that the speaker-independent
phoneme-specific articulatory constraints efficiently
decrease the estimation error for speech inversion.

Figure 6: Speaker-normalized articulatory parame-
ters for each vowel for females.

7 Discussions

We have previously found that the estimation er-
ror of articulatory parameters from both formants
and FO based on the codebook search method [6]
was smaller than that from formants only [13]. This
was evidence that doesn’t fit the source-filter the-
ory for speech production [4]. Based on the find-
ing, this study added a FO to acoustic parameters but
we should quantitatively evaluate the FO effect for
speech inversion using our dynamical models.

We also have found that context-dependent pho-
netic HMMs and phonemic information in an ut-
terance significantly decreased the error (p <
0.01) [10]. However, vowel dynamical models in
this study didn’t take into account the preceding and
subsequent consonants in CVCs (Figs. 5, 6 and 7).
These vowel dynamics may vary depending on the
consonants by coarticulation effect, so it is expected
that the use of the context-dependent models will de-
crease the error of articulatory parameters.

Previously, a geometrical-based normalization
method for articulatory parameters has been pro-
posed [7] but Simpson pointed out that the method
cannot reduce cross-speaker variance along the long
axis of the vocal tract [1]. Thus, we expect that our
normalized speech production model is useful for in-
vestigating the phoneme-specific invariant features
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Figure 8: Measured (thin lines) and estimated (thick lines) articulatory parameters for horizontal and vertical

positions of vowel [ce] for speaker MO1.
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Figure 7: Speaker-normalized formant trajectories
for each vowel for each gender.

included in speech signals in terms of articulatory
parameters and the differences between genders.

8 Conclusions

This study demonstrated the small articulatory
parameter estimation error obtained using a speaker-
normalized articulatory dynamical model. We plan
to develop an application for speech training.
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Figure 9: RMS error of articulatory parameters for
each articulator. Error bars indicate the standard
deviation of the mean.
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